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This work explores an information-theoretic approach to drawing inferences about coupling of spatially

extended ecological populations based solely on time-series of abundances. The efficacy of the approach,

time-delayed mutual information, was explored using a spatially extended predator–prey model system in

which populations at different patches were coupled via diffusive movement. The approach identified the

relative magnitude and direction of information flow resulting from animal movement between

populations, the change in information flow as a function of distance separating populations, and the

diffusive nature of the information flow. In addition, when the diffusive movement was eliminated from the

model, mutual information correctly provided no evidence of information flow, even when population

synchrony was generated by a common environmental driving function. Thus, for this model system, time-

delayed mutual information was useful in discriminating between the Moran effect and animal movement

as causes of population synchrony, as well as in characterizing dispersal in terms of direction, relative speed

and diffusive nature.
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1. INTRODUCTION
Ecology is the study of the distribution and abundance of

organisms over time and space. A central goal of ecologists

is to develop a mechanistic understanding of temporal and

spatial variation that can be used for prediction (e.g.

Rhodes et al. 1996; Lande et al. 1999; Kendall et al. 2000;

Keeling & Rohani 2002). Synchronous fluctuations of

single-species populations in different locations at both

local and regional scales are a form of time–space variation

that has been of special interest to ecologists (e.g.

Moran 1953; Ranta et al. 1995, 1998; Grenfell et al.

1998; Bjørnstad et al. 1999a,b; Hudson & Cattadori 1999;

Koenig 1999; Swanson & Johnson 1999; Ripa 2000;

Peltonen et al. 2002; Post & Forchhammer 2002).

Mechanisms underlying such synchrony fall into two

basic categories (e.g. Ranta et al. 1998; Bjørnstad et al.

1999a; Koenig 1999; Swanson & Johnson 1999; Kendall

et al. 2000): (i) those based on movement of animals (by

either the focal species or their predators) and (ii) those

based on spatially correlated environmental variation

(often referred to as the Moran effect; see Moran 1953;

Royama 1992). When evidence of synchrony is found,

distinguishing between these alternative explanations is

important not only with respect to mechanistic prediction,

but also from a conservation perspective (e.g. Hudson &

Cattadori 1999). For example, local extinction of an area

is much more likely to be followed by recolonization if

dispersal is a primary cause of synchronization.

Studies of single-species population dynamics over

space focus on both the possible existence of synchronous

dynamics and, if present, the responsible mechanism(s).

Evidence for the existence of synchrony typically involves
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cross-correlation analyses of time-series of abundance

data (e.g. see Bjørnstad et al. 1999a,b; Koenig 1999).

Evidence for mechanisms underlying synchrony can be

based either on direct approaches involving study of the

purported mechanisms themselves or on indirect

approaches based on the time-series of abundance data.

For example, investigations can be focused on the

relationship between local weather conditions and large-

scale climate variation on vital rates and even body weights

of natural animal populations (e.g. Leirs et al. 1997; Sillett

et al. 2000; Mysterud et al. 2001). Similarly, the dispersal

process has been the subject of extensive direct investi-

gation (e.g. Clobert et al. 2001). Indirect approaches

attempt to use time-series of abundances at different

locations to discriminate between environmental variation

and dispersal as causes of synchrony. For example,

synchrony produced by dispersal is expected to decrease

as a function of distance between locations, whereas this

tendency is not expected if different locations are being

influenced by the same environmental driving variable

operating at a regional or global scale (e.g. Koenig 1999;

Swanson & Johnson 1999). Nevertheless, there are

limitations to what inferences can be made about

mechanisms inducing synchrony from population time-

series data alone (Bjørnstad et al. 1999a).

Recently, Nichols et al. (2005) noted that indirect

approaches to the study of coupling based on linear

correlation were not necessarily appropriate for popu-

lations exhibiting nonlinear dynamics, and such

approaches provided no inferences about asymmetric

directional movement. Thus, they used methods based

on attractor reconstruction for nonlinear systems to

assess the strength and asymmetry of dispersal-based

coupling between spatially separated components of
q 2005 The Royal Society



2 J. M. Nichols Inferences about information flow for population systems
a predator–prey model with diffusive movement (Pascual

1993; Little et al. 1996). Specifically, they investigated

dynamic interdependence (generalized synchrony) by

drawing inferences about the nature of functions relating

reconstructed attractors. Using mutual prediction (Schiff

et al. 1996) and continuity statistics (Pecora et al. 1995;

Moniz et al. 2004), Nichols et al. (2005) were able to

detect not only the dynamic interdependence of the

components of this system but also the asymmetric nature

of the coupling.

In this paper, coupling is viewed in terms of infor-

mation flow and an information-theoretic approach, time-

delayed mutual information (Vastano & Swinney 1988), is

used to investigate coupling using time-series data.

Specifically, time-series of location-specific abundances

is generated using the spatially extended predator–prey

model of Pascual (1993; also see Little et al. 1996; Nichols

et al. 2005). The time-series data are used to determine the

direction of information transport among locations and to

infer the diffusive nature of the coupling. The diffusion

terms are then removed from the model to generate time-

series of isolated patches exhibiting predator–prey

dynamics in the presence and absence of a common

environmental driving function. Although the common

environmental driver does induce synchrony of the

populations, the time-delayed mutual information pro-

vides no evidence of information transport. Thus, this

data-analytic approach is able to clearly distinguish

between the Moran effect (Moran 1953; Royama 1992)

and dispersal as causes of population synchrony for this

model system.
2. TIME-DELAYED MUTUAL INFORMATION
Assume that there exist two systems, Yand Z, and that we

are able to measure these systems at N discrete points in

time, resulting in the time-series yi, zi, iZ1,.,N. Each

measurement is a discrete random variable with under-

lying probability density function p( yi) and p(zi), respect-

ively. The joint probability density (assuming that Y, Z

have been measured simultaneously) is given by p( yi, zi).

The amount of information common to these two systems

can be described by the mutual information

IðY ;ZÞZ
X
yz

pð yi ; ziÞlog2
pð yi ; ziÞ

pð yiÞpðziÞ
: (2.1)

Equation (2.1) may be interpreted as a metric reflecting

the amount of information the process Z has in

common with the process Y. If the two systems are

assumed to be independent, then one has p( yi,zi)Z
p( yi)p(zi), resulting in I(Y;Z)Z0. If the process Z

contains some information about the process Y, then

this assumption is violated and I(Y;Z) will record some

non-zero value of bits (assuming base 2 logarithms are

used) common to the two processes. The mutual

information function is symmetric under exchange of

its arguments y, z, and cannot immediately be used to

detect the direction of transport of information between

the two systems. However, if one instead looks at the

time-delayed mutual information,

IðY ;ZT Þh
X
yz

pð yi ; ziCT Þlog2
pð yi ; ziCT Þ

pð yiÞpðziCT Þ
;
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then a sense of directionality is acquired. If information

present at system Y at discrete time i is transmitted to

system Z, then there will be a peak in the curve I(Y;

ZT) at TO0 as the joint probability density increases

and reaches its maximum. A peak that occurs for T!0

implies that the information is being transported from Z

to Y. Time-delayed mutual information has been used

to detect the direction of information flow in neuron

firings (Destexhe 1994), in a reaction diffusion system

(Vastano & Swinney 1988) and a coupled map lattice

(Ho & Shin 2003). By utilizing a more generic

definition of coupling (shared information), mutual

information can be used to detect information transfer

in linear or nonlinear systems. It should be mentioned

that a different metric, the transfer entropy, was

recently introduced by Schreiber (2000). The transfer

entropy metric was specifically designed to look at

information transport, and has already been used to

examine physiological coupling (Kaiser & Schreiber

2002) and financial time-series (Marschinski & Kantz

2002). Transfer entropy utilizes the notion of con-

ditional probability and is naturally asymmetric (as

opposed to requiring a time delay). This particular

metric quantifies the additional information in one

time-series (process) that is not contained in the other.

Transfer entropy is not explored in this paper but is

referenced for completeness.

Computing the time-delayed mutual information

requires the estimation of single and joint probability

densities as one system is time delayed with respect to the

other. Themethod by which these quantities are estimated

is predicated heavily on the amount and quality of the data

being analysed. For a uni- or possibly multivariate time-

series measurement xi iZ1,.,N (boldface type denotes a

vector), one approach is to estimate the probability density

at a given point i as

p̂ðxi ;RÞZ
1

N

XN
jZ1
jsi

QðRKkxi KxjkÞ; (2.2)

where the dependence of the estimate on the ‘bin size’ R is

made explicit. Equation (2.2) represents a crude form of a

kernel density estimation using the step kernel (Heaviside

function):

QðaÞZ
1 : a%0

0 : a!0
:

(

The integral quantifies the probability that a time-series

point xj will be found within some radius R of the point

recorded at time i. Following the work of Liebert &

Schuster (1989) and Prichard & Theiler (1995), the

relevant quantities required by equation (2.1) can be

given by

X
i

pðxiÞlog2ðpðxiÞÞz
1

N

X
i

log2ð p̂ðxi ;RÞÞZ log2Cðxi ;R ),

(2.3)

where C(x, R) is the generalized correlation integral of

order 1 (see Kantz & Schreiber 1999), obtained by



0

200

400

600 0

25

50

75

100

0

0.5

1.0

lattice sitetime

po
pu

la
tio

n 
si

ze

Figure 1. Spatio-temporal prey dynamics for the system given
by equation (3.1).
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averaging equation (2.2) over all points i. Equation (2.1) is

thereby altered to read

IðY ;ZT ;RÞZ log2
Cð yi ; ziCT ;RÞ

Cð yi ;RÞCðziCT ;RÞ

� �
: (2.4)

The biggest difficulty with using a non-parametric

approach to analyse ecological data concerns the required

time-series length. This general approach to density

estimation requires that the time-series be of sufficient

length to fully populate the partitioned data space. That is,

the system must revisit a given state enough times to

accurately quantify the local density. In this study and in

previous work (see Nichols et al. 2005), results were

qualitatively the same for as few as 800–1000 point time-

series even with this ‘brute-force’ approach to density

estimation. For shorter datasets, the practitioner will

probably have to alter the algorithm. One possibility is to

make use of kernel density estimation techniques (see

Silverman 1986), which use a more intelligent weighting

scheme. Rather than simply counting points in an R-ball,

one may weight them according to their distance from the

fiducial trajectory (xi in equation (2.2)). Parametric or

semi-parametric approaches may also prove useful when

there exists some a priori knowledge of the distribution of

the underlying populations. Also of interest is the situation

where the practitioner has a model system (effectively

unlimited data) and wishes to draw inferences from time-

series generated by that model. Pascual & Levin (1999),

for example, used time-series from a cellular automaton to

assess a spatial scale for defining population densities

while Wilson & Richards (2000) used a consumer-

resource ‘patch’ model to analyse foraging in a spatial

environment. Here, the potential utility of information

theoretics is considered independent of the method of

density estimation.
3. NUMERICAL MODEL
To examine coupling via information transport, a spatially

one-dimensional predator–prey model was considered.

The model was introduced by Pascual (1993) and

explored further by Little et al. (1996), and describes the

evolution of the prey q and predator h in both time t and

space x according to

vq

vt
Z rxqð1KqÞK

aq

1Cbq
hCd

v2q

vx2
;

vh

vt
Z

aq

1Cbq
hKmhCd

v2h

vx2
;

rx Z eK fx:

(3.1)

The dimensionless variables q, h and x represent the prey

density, predator density and spatial coordinate, respect-

ively. Reflective boundary conditions are considered at

xZ[0,1] as

vq

vx
Z

vh

vx
Z 0:

Parameters are the predator death rate m, diffusion

coefficient d, the predator/prey interaction a, the prey

carrying capacity b, and the intrinsic growth rate rx, of the

prey population, which is (for non-zero f ) a function of

space. The resource term is a linearly declining function

of space with value r0ZeZcost at the boundary.
Proc. R. Soc. B
The parameter f governs the rate of resource decline and

hence the degree of spatial asymmetry. As in Pascual

(1993), the death rate, diffusion coefficient, boundary

resource and carrying capacity are fixed at mZ0.6,

dZ10K4, eZ5.0, bZ2.0. Figure 1 shows the system

response in both time and space. Oscillations near areas of

high resource abundance tend to be periodic in nature

while those near low resource areas exhibit chaotic

dynamics (see Pascual 1993).

To simulate the Moran effect, an external driving term

can be added in the form of a periodic function in the

resource term resulting in

rx Z eK ð f C3 sinð2pt=tÞÞx; (3.2)

where t is the period of oscillation and is taken to be

roughly an order of magnitude longer than that associated

with the system’s natural period of oscillation. The

diffusion coefficient is then set to 0 (dZ0) to prohibit

movement from one location to another. The system now

represents a set of closed predator–prey communities

influenced by a common environmental driving variable of

amplitude 3.
4. APPLICATION TO A PREDATOR–PREY SYSTEM
Using a finite difference scheme, equation (3.1) was

integrated for NZ10 000 time-steps (post-transient) with

a dimensionless sampling time of 0.5. The dominant

frequency for this system is approximately 0.065 cycles

per unit time so that this sampling rate was deemed

sufficient to capture the dynamics. Simulations were

performed on a spatial grid consisting of jZ1,.,100

sites, distributed evenly on x2[0, 1]. Prior to the analysis,

all time-series were normalized by subtracting their mean

and dividing by the standard deviation. Simple changes in

population mean and/or variance are therefore removed

from consideration here.

In an earlier work by Nichols et al. (2005), it was

hypothesized that information in this system flowed

‘downhill’ from areas of high resource abundance to

areas of low resource. Put another way, the dynamics of

the populations at the high resource end are influencing

those at the low resource end but not vice versa. The main

reason for this conjecture is that the populations at the

higher resource end of the system are simply larger.

Diffusive coupling links a given site on the lattice to its two
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neighbours (the numerical approximation to the second

derivative includes the jK1, j, jC1 lattice site popu-

lations). Higher populations sizes for smaller j means that

the term linked to the ( jK1)th lattice site will more heavily

influence the dynamics at the jth site than will the term at

site jC1. Thus, the dynamics at the high resource end

propagate towards the low resource end. This hypothesis

may be directly tested using the concept of time-delayed

mutual information.

To this end the mutual information between the prey

dynamics (time-series) at various spatial points at the high

resource end and a ‘target’ point at the low resource end

was computed. Specifically, the function I (Y ( j), Z ðkÞ
T , R),

jZ70, 71,.,94, kZ95 was computed forK350%T%350

and RZ0.035 (3.5% of the signal variance). The notation

Y ( j) simply denotes that the system Y was observed at

spatial location j. Results are shown in figure 2 for select

spatial sites. Each curve shows a single peak on which

a number of periodic fluctuations are superimposed.

These fluctuations correspond to the natural period of
Proc. R. Soc. B
the dynamics. Essentially, the time-series are going in and

out of phase as one is delayed with respect to the other.

The amplitude of these fluctuations is larger than shown in

figure 2. A 25-point ‘running smooth’ was used in which a

sliding window of 25 points was passed through the curve

and the mean of each window plotted. This was done

purely for visualization purposes (otherwise, the fluctu-

ations on the various curves overlap such that it becomes

difficult to see the separate peaks). The important feature

is the location of the dominant peak in time. All peaks

occur at TO0, indicating that information flows from the

high resource locations to location xZ0.95. As expected, a

larger spatial separation implies a longer time for the

information to reach the target point. It should be noted

that the time-scale of information transport is significantly

longer than the natural period of the system.

Plots such as figure 2 may also be used to define critical

length (distance) scales of influence. It is clear that once

the spatial separation reaches DxZ0.25 (e.g. lattice sites

xZ0.7 and 0.95), the prey populations have low mutual

information (approximately 0.2 bits) and little infor-

mation exchange (the curve is nearly flat).

In addition to the directionality information, one can

also deduce the form of the coupling (i.e. the form of the

dispersal functional) by examining the spread of the peaks.

Following Vastano & Swinney (1988), the width of the

curves can be quantified by the ‘full width half-max’

(width of the peak at half it’s maximum value), denoted

DT. Figure 3 shows the log–log plot of the DT values as a

function of spatial separation Dx. For diffusive coupling, it
has been observed (Vastano & Swinney 1988; Destexhe

1994) that the width of the peaks tends to grow as

the distance squared from the target point. As shown in

figure 3 the slope is approximately 0.5 suggesting that

indeed the coupling is diffusive in nature.

As a check, the simulations were repeated with the

coupling removed (dZ0.0 in the model). Figure 4 shows

the resulting I(Y(90), Zð95Þ
T , R) curves corresponding to

spatial locations xZ0.90, 0.95. The radius used in

estimating equation (2.4) was fixed at RZ0.035. As with

figure 2, a 25-point running smooth was used in plotting in

order to maintain consistency. The absence of any clear

peak (asymmetry) illustrates that no information is passing

from one spatial site to another. All that is being observed

are fluctuations at the system’s natural period as the

delayed measurement Z ð95Þ
T goes in and out of phase with

the fixed measurement Y(90). The amplitude of the

fluctuations is also seen to be much lower than with the

diffusive coupling added. Furthermore, the average

number of bits Y (90) and Zð95Þ
T have in common is much

lower (approximately 0.1 bits) than when diffusive

coupling is present. However, because the magnitude of

I(Y, ZT, R) can be heavily dependent on R, care should be

exercised when drawing conclusions based on scale alone

(a discussion of the effects of R may be found in Kaiser &

Schreiber (2002)).

The final test was to add in an external periodic

driving term while the spatial coupling remained fixed at

dZ0.0. The goal here was to discriminate the synchro-

nizing effects of external driving from dispersal. Simu-

lations were repeated with the inclusion of the periodic

forcing alluded to in §3 (equation (3.2)) using an

amplitude of 3Z0.25 at a frequency of 1/tZ0.01 cycles

per unit time. Results are shown in figure 4 where
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the probabilities were again estimated using RZ0.035. In

this case, the dominant period of the driving is evident in

the information content, yet there is no directionality

associated with any information flow. Unlike figure 2,

there is no dominant peak in either forward or reverse

time indicating the absence of information transport. The

conclusion is that although both systems (lattice sites) are

‘slaved’ to a common driver there is still no evidence of

information transport between them. It may therefore be

concluded that this approach may be used to distinguish

the Moran effect from dispersal. However, if the drive

signal is spatially varying (not global), then such a

conclusion may be difficult to reach.
5. CONCLUSIONS
Drawing inferences about mechanisms underlying popu-

lation synchrony from time-series of abundances is a

difficult problem (e.g. Bjørnstad et al. 1999a). In another

work, Nichols et al. (2005) drew inferences about coupling

based on general characteristics of the functions relating

two reconstructed attractors. In the present work,

inferences are based on an information-theoretic approach

in which dynamic systems are viewed as generators of

information (e.g. Prichard & Theiler 1995). The use of

information theory in ecology is not new and ranges from

species diversity metrics and inferences about diversity–

stability relationships (e.g. see MacArthur 1955; Margalef

1958, 1968) to natural selection within age-structured

populations (Demetrius 1974, 1975), to model selection

in the context of statistical inference (Burnham &

Anderson 2002). The work in this paper uses the time-

delay mutual information approach of Vastano & Swinney

(1988), but other information-theoretic approaches

appear to hold promise as well (Schreiber 2000; Palûs

et al. 2001; Kaiser & Schreiber 2002). All of these

approaches require only that the practitioner be able to

estimate the relevant probability densities from the data.

The approach used in this paper sought to identify the

time delay at which the mutual information function

between two time-series reaches a maximum. In the

presence of diffusive movement within the model

predator–prey system, the approach identified the relative

magnitude and direction of information flow resulting

from animal movement between populations, the change

in information flow as a function of distance separating

populations, and the diffusive nature of the information
Proc. R. Soc. B
flow. In addition, when the diffusive movement was

eliminated from the model, mutual information correctly

provided no evidence of information flow, even when

population synchrony was generated by a common

environmental driving function. Thus, for this model

system, time-delayed mutual information was useful in

discriminating between the Moran effect and animal

movement as causes of population synchrony, as well as

in characterizing dispersal in terms of direction, relative

speed and diffusive nature.
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